• 试题 ID 34834


设 $\boldsymbol{A}, \boldsymbol{B}$ 为 $n$ 阶可逆矩阵, $\boldsymbol{C}=\left[\begin{array}{cc}\boldsymbol{A} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{B}\end{array}\right]$ ,则 $\boldsymbol{C}$ 的伴随矩阵 $\boldsymbol{C}^*=(\quad)$ 。
A $\left[\begin{array}{ll}\boldsymbol{A}^* & \mathbf{0} \\ \mathbf{0} & \boldsymbol{B}^*\end{array}\right]$ ;
B $\left[\begin{array}{cc}|\boldsymbol{B}|^{-1} \boldsymbol{A}^* & \mathbf{0} \\ \mathbf{0} & |\boldsymbol{A}|^{-1} \boldsymbol{B}^*\end{array}\right] ;$
C $\left[\begin{array}{cc}|\boldsymbol{B}| \boldsymbol{A}^* & \boldsymbol{0} \\ \boldsymbol{0} & |\boldsymbol{A}| \boldsymbol{B}^*\end{array}\right]$ ;
D $\left[\begin{array}{cc}|\boldsymbol{A}| \boldsymbol{A}^* & \mathbf{0} \\ \mathbf{0} & |\boldsymbol{B}| \boldsymbol{B}^*\end{array}\right]$ .
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见