• 试题 ID 34850


设向量组

$$
\begin{aligned}
& \boldsymbol{\alpha}_1=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \boldsymbol{\alpha}_2=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right], \boldsymbol{\alpha}_3=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] ; \\
& \boldsymbol{\beta}_1=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \boldsymbol{\beta}_2=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \boldsymbol{\beta}_3=\left[\begin{array}{l}
a \\
0 \\
1
\end{array}\right] .
\end{aligned}
$$

(1)问:$a$ 取何值时,向量组 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ 是向量空间 ${ }^3$ 的基,为什么?
(2)求 $2^3$ 中基 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 到基 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ 的过渡矩阵。
A
B
C
D
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见