• 试题 ID 35048


证明等式 $\int_0^a x^3 f\left(x^2\right) d x=\frac{1}{2} \int_0^{a^2} x f(x) d x$ ,其中 $f(x)$ 连续,$a>0$ ,并计算 $\int_0^{\sqrt{\frac{\pi}{2}}} x^3 \sin \left(x^2\right) d x$ .
A
B
C
D
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见