科数网
试题 ID 4029
【所属试卷】
2022年余炳森考研数学模拟考试(数学二)
设 $f(x)$ 在 $[0,+\infty)$ 上可导, 且 $f(0)=0$, 其反函数为 $g(x)$, 满足
$$
\int_0^{f(x)} g(t) \mathrm{d} t=(x-1) \mathrm{e}^x+x^2+1,
$$
则 $f(x)$ 的表达式为 $f(x)=$
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $f(x)$ 在 $[0,+\infty)$ 上可导, 且 $f(0)=0$, 其反函数为 $g(x)$, 满足
$$
\int_0^{f(x)} g(t) \mathrm{d} t=(x-1) \mathrm{e}^x+x^2+1,
$$
则 $f(x)$ 的表达式为 $f(x)=$
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见