科数网
试题 ID 4333
【所属试卷】
2023年武汉理工大学数学分析考研真题及参考解答
已知 $f(x)$ 在 $[0,2]$ 上二阶可导,且
$$
\max _{0 \leq x \leq 2}\left\{|f(x)|,\left|f^{\prime \prime}(x)\right|\right\} \leq 1 ,
$$
证明: 对任意的 $x \in[0,2],\left|f^{\prime}(x)\right| \leq \mathbf{2}$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知 $f(x)$ 在 $[0,2]$ 上二阶可导,且
$$
\max _{0 \leq x \leq 2}\left\{|f(x)|,\left|f^{\prime \prime}(x)\right|\right\} \leq 1 ,
$$
证明: 对任意的 $x \in[0,2],\left|f^{\prime}(x)\right| \leq \mathbf{2}$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见