科数网
试题 ID 436
【所属试卷】
2011 年全国统一高考数学试卷(理科)(新课标)
设函数 $f(x)=|x-a|+3 x$, 其中 $a>0$.
(I) 当 $a=1$ 时, 求不等式 $f(x) \geqslant 3 x+2$ 的解集
(II ) 若不等式 $f(x) \leqslant 0$ 的解集为 $\{x \mid x \leqslant-1\}$, 求 $a$ 的值.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设函数 $f(x)=|x-a|+3 x$, 其中 $a>0$.
(I) 当 $a=1$ 时, 求不等式 $f(x) \geqslant 3 x+2$ 的解集
(II ) 若不等式 $f(x) \leqslant 0$ 的解集为 $\{x \mid x \leqslant-1\}$, 求 $a$ 的值.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见