科数网
试题 ID 4408
【所属试卷】
设$0 < a_{1} < \pi$ ,$a_{n+1}= \sin a_{n}(n=1,2, \cdots )$
.(1)证明: $\lim _ {n \rightarrow \infty }a_{n} $存在,并求此极限;
(2)求 $\lim _ {n \rightarrow \infty } \left ( \dfrac {1}{a_{n+1}^{2}}- \dfrac {1}{a_{n}^{2}} \right )$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设$0 < a_{1} < \pi$ ,$a_{n+1}= \sin a_{n}(n=1,2, \cdots )$
.(1)证明: $\lim _ {n \rightarrow \infty }a_{n} $存在,并求此极限;
(2)求 $\lim _ {n \rightarrow \infty } \left ( \dfrac {1}{a_{n+1}^{2}}- \dfrac {1}{a_{n}^{2}} \right )$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见