科数网
试题 ID 4647
【所属试卷】
2022年第二学期《线性代数》期末考试模拟试卷
设四元非齐次线性方程组的系数矩阵的秩为 3 , 已知 $\eta_1, \eta_2, \eta_3$ 是它的三个解向量且 $\eta_1=\left[\begin{array}{l}2 \\ 3 \\ 4 \\ 5\end{array}\right], \eta_2+\eta_3=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$, 求该方程组的通解。
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设四元非齐次线性方程组的系数矩阵的秩为 3 , 已知 $\eta_1, \eta_2, \eta_3$ 是它的三个解向量且 $\eta_1=\left[\begin{array}{l}2 \\ 3 \\ 4 \\ 5\end{array}\right], \eta_2+\eta_3=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$, 求该方程组的通解。
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见