科数网
试题 ID 5307
【所属试卷】
若 $\lim \limits_ {x \rightarrow 0} \dfrac {x- \sin ax}{ \int _{0}^{x} \dfrac {t^{2}}{ \sqrt {b t^{4}}}dt}=2$, 则$\left(\quad\right)$.
A
$a = 1$,$b = 2$
B
$a = 1$,$b = 4$
C
$a = 1$,$b = 6$
D
$a = 1$,$b = 16$
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
若 $\lim \limits_ {x \rightarrow 0} \dfrac {x- \sin ax}{ \int _{0}^{x} \dfrac {t^{2}}{ \sqrt {b t^{4}}}dt}=2$, 则$\left(\quad\right)$.
$a = 1$,$b = 2$ $a = 1$,$b = 4$ $a = 1$,$b = 6$ $a = 1$,$b = 16$
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见