科数网
试题 ID 7181
【所属试卷】
2023年普通高等学校招生全国统一考试 理科数学(全国乙卷)模拟考试(老高考-终结版)
已知等轴双曲线的顶点 $F_1(-2,0), F_2(2,0)$ 分别是椭圆 $C$ 的左、右焦点, 且 $x=\frac{4 \sqrt{3}}{3}$ 是粗圆与双 曲线某个交点的横坐标.
(1) 求椭圆 $C$ 的方程;
(2) 设直线 $l$ 与椭圆 $C$ 相交于 $A, B$ 两点, 以线段 $A B$ 为直径的圆过椭圆的上顶点 $M$, 求证: 直 线 $l$ 恒过定点.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知等轴双曲线的顶点 $F_1(-2,0), F_2(2,0)$ 分别是椭圆 $C$ 的左、右焦点, 且 $x=\frac{4 \sqrt{3}}{3}$ 是粗圆与双 曲线某个交点的横坐标.
(1) 求椭圆 $C$ 的方程;
(2) 设直线 $l$ 与椭圆 $C$ 相交于 $A, B$ 两点, 以线段 $A B$ 为直径的圆过椭圆的上顶点 $M$, 求证: 直 线 $l$ 恒过定点.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见