科数网
试题 ID 7344
【所属试卷】
2023 年普通高等学校招生全国统一考试(新高考全国 II 卷) 数学
(1) 证明: 当 $0 < x < 1$ 时, $x-x^2 < \sin x < x$;
(2) 已知函数 $f(x)=\cos a x-\ln \left(1-x^2\right)$, 若 $x=0$ 是 $f(x)$ 的极大值点, 求 $a$ 的取值范围.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
(1) 证明: 当 $0 < x < 1$ 时, $x-x^2 < \sin x < x$;
(2) 已知函数 $f(x)=\cos a x-\ln \left(1-x^2\right)$, 若 $x=0$ 是 $f(x)$ 的极大值点, 求 $a$ 的取值范围.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见