科数网
试题 ID 9304
【所属试卷】
2023 年安徽大学大学生数学竞赛暨全国竞赛选拔赛 (非数学 B 类)试题
设 $n$ 为给定的正整数, $[x]$ 表示 $x$ 的取整, $\int_0^{\frac{\pi}{2}} \ln \sin t \mathrm{~d} t=-\frac{1}{2} \pi \ln 2$. 计算
$$
I=\int_0^1[n x] \cdot \frac{\ln x+\ln (1-x)}{\sqrt{x(1-x)}} \mathrm{d} x .
$$
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $n$ 为给定的正整数, $[x]$ 表示 $x$ 的取整, $\int_0^{\frac{\pi}{2}} \ln \sin t \mathrm{~d} t=-\frac{1}{2} \pi \ln 2$. 计算
$$
I=\int_0^1[n x] \cdot \frac{\ln x+\ln (1-x)}{\sqrt{x(1-x)}} \mathrm{d} x .
$$
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见