• 试题 ID 9305


设 $x>0$ 时, $\left(1+x^2\right) f^{\prime}(x)+(1+x) f(x)=1 , g^{\prime}(x)=f(x), f(0)=g(0)=0$.
证明: $\sum_{n=1}^{\infty} g\left(\frac{1}{n}\right) < \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}=\frac{\pi^2}{12}$.
A
B
C
D
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见