科数网
试题 ID 9923
【所属试卷】
2024年全国硕士研究生招生考试(数学一)模拟考试
求 $x=\cos t(0 < t < \pi)$ 将方程 $\left(1-x^2\right) y^{\prime \prime}-x y^{\prime}+y=0$ 化为 $y$ 关于 $t$ 的微分方程, 并求满足 $\left.y\right|_{x=0}=1,\left.y^{\prime}\right|_{x=0}=2$ 的解.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
求 $x=\cos t(0 < t < \pi)$ 将方程 $\left(1-x^2\right) y^{\prime \prime}-x y^{\prime}+y=0$ 化为 $y$ 关于 $t$ 的微分方程, 并求满足 $\left.y\right|_{x=0}=1,\left.y^{\prime}\right|_{x=0}=2$ 的解.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见