单选题 (共 4 题 ),每题只有一个选项正确
下列等价关系正确的是()
$\text{A.}$ $\forall x(P(x) \vee Q(x)) \Leftrightarrow \forall x P(x) \vee \forall x Q(x)$
$\text{B.}$ $\exists x(P(x) \vee Q(x)) \Leftrightarrow \exists x P(x) \vee \exists x Q(x)$
$\text{C.}$ $\forall x(P(x) \rightarrow Q) \Leftrightarrow \forall x P(x) \rightarrow Q$
$\text{D.}$ $\exists x(P(x) \rightarrow Q) \Leftrightarrow \exists x P(x) \rightarrow Q$
$(\exists x)(P(a, x) \rightarrow(\forall y) Q(x, b, y))$ 的前束范式为 $\qquad$ .
$\text{A.}$ $(\exists x)(\forall y)(\neg P(a, x) \vee Q(x, b, y))$
$\text{B.}$ $\neg(\forall x)(\exists y)(P(a, x) \wedge \neg Q(x, b, y))$
$\text{C.}$ $(\exists x)(\forall y)(\neg P(a, x) \wedge Q(x, b, y))$
$\text{D.}$ $(\exists x)(\neg P(a, x) \vee(\forall y) Q(x, b, y))$
设个体域为 $\{-1,1\}$, 并对 $P(x, y)$ 设定为 $P(-1,-1)=T, P(-1,1)=F, P(1,-1)=T$, $P(1,1)=F$, 其真值为 $T$ 的公式为 $\qquad$ .
$\text{A.}$ $(\forall x)(\exists y) P(x, y)$
$\text{B.}$ $(\exists x)(\forall y) P(x, y)$
$\text{C.}$ $(\forall x)(\forall y) P(x, y)$
$\text{D.}$ $(\forall y)(\exists x) P(x, y)$
下面是真命题的是( )
$\text{A.}$ $\{a\} \subseteq\{\{a\}\}$
$\text{B.}$ $\{\{\varnothing\}\} \in\{\varnothing,\{\varnothing\}\}$
$\text{C.}$ $\varnothing \in\{\varnothing,\{\varnothing\}\}$
$\text{D.}$ $a \in\{\{a\}\}$
多选题 (共 1 题 ),每题有多个选项正确
下列四个公式正确的有()
$\text{A.}$ $\forall x(A(x) \wedge B(x)) \Longrightarrow \forall x A(x) \wedge \forall x B(x)$
$\text{B.}$ $\forall x(A(x) \vee B(x)) \Longrightarrow \forall x A(x) \vee \forall x B(x)$
$\text{C.}$ $\exists x(A(x) \vee B(x)) \Longrightarrow \exists x A(x) \vee \exists x B(x)$
$\text{D.}$ $\exists x A(x) \wedge \exists x B(x) \Longrightarrow \exists x(A(x) \wedge B(x))$
填空题 (共 3 题 ),请把答案直接填写在答题纸上
求合式公式 $\exists x P(x) \rightarrow \exists x Q(x, y)$ 的前束范式
求谓词公式的前束范式 $\neg \forall x(F(x) \rightarrow G(x)) $
若集合 $A$ 的元素个数 $|A|=8$, 则其幂集的元素个数 $|P(A)|=$