解答题 (共 12 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设 $f(x)$ 连续且 $f(x) \neq 0, \int x f(x) d x=\arcsin x+C$ ,求 $\int \frac{1}{f(x)} d x$ .
$ \int \frac{1}{1+e^x} d x$
$\int \frac{\sin (\ln x)}{x} d x$
$\int \sin ^3 x \cos x d x$
$\int \frac{1}{\sqrt{1-x^2}(\arcsin x)^3} d x$
$\int \frac{\arctan \sqrt{x}}{\sqrt{x}(1+x)} d x$;
$\int \frac{x}{\sqrt{1+x^2+\sqrt{\left(1+x^2\right)^3}}} d x$;
$\int \frac{\arctan \frac{1}{x}}{1+x^2} d x$ .
$\int \frac{x^2+1}{x^4+1} d x$;
$\int \frac{1-x^6}{x\left(1+x^6\right)} d x$;
$\int \frac{\sqrt{a^2-x^2}}{x^4} d x$;
$\int \frac{1}{x^2 \sqrt{a^2+x^2}} d x$;