单选题 (共 2 题 ),每题只有一个选项正确
设 $f(x)=2^x+3^x-2$, 则当 $x \rightarrow 0$ 时, 有
$\text{A.}$ $f(x)$ 与 $x$ 是等价无穷小
$\text{B.}$ $f(x)$ 与 $x$ 同阶但非等价无穷小
$\text{C.}$ $f(x)$ 是比 $x$ 高阶的无穷小
$\text{D.}$ $f(x)$ 是比 $x$ 低阶的无穷小
设$f(x)=\dfrac{e^{\frac{1}{x}}-1}{\mathrm{e}^{\frac{1}{x}}+1}$则 $x=0$ 是 $f(x)$ 的
$\text{A.}$ 可去间断点
$\text{B.}$ 跳跃间断点
$\text{C.}$ 第二类间断点
$\text{D.}$ 连续点
解答题 (共 2 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
证明
$$
\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+\cdots+\frac{1}{\sqrt{n^2+n}}\right)=1 .
$$
证明方程 $\sin x+x+1=0$ 在开区间 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 内至少有一个根.