单选题 (共 6 题 ),每题只有一个选项正确
设有直线 $L_{1}: \frac{x-1}{1}=\frac{y-5}{-2}=\frac{z+8}{1}$ 与 $L_{2}:\left\{\begin{array}{l}x-y=6 \\ 2 y+z=3\end{array}\right.$, 则 $L_{1}$ 与 $L_{2}$ 的夹角为 ( )
$\text{A.}$ $\frac{\pi}{6}$
$\text{B.}$ $\frac{\pi}{4}$
$\text{C.}$ $\frac{\pi}{3}$
$\text{D.}$ $\frac{\pi}{2}$
下列函数中,在$x=0$处可导的是$\left(\quad\quad\right)$.
$\text{A.}$ $f(x)= \dfrac {|x|}{x 1}$
$\text{B.}$ $f(x)= \sqrt { \cos x}$
$\text{C.}$ $f(x)=x \arctan \dfrac {1}{x}$
$\text{D.}$ $f(x)= \cos \sqrt {|x|}$
设$g(x)$有界$f(x)= \begin{cases} \dfrac { \cos x-1}{x},&x < 0, \\ x^{ \dfrac {3}{2}}g(x),&x \ge 0, \end{cases}$ 则$f(x)$在$x=0$处$\left(\quad\quad\right)$.
$\text{A.}$ 极限不存在
$\text{B.}$ 存在极限但不连续
$\text{C.}$ 连续但不可导
$\text{D.}$ 可导
设$f(x)$以2为周期且 $f'(1)=\pi$, 则 $\lim \limits _{x \rightarrow 0} \dfrac {f(3 2x)-f(-1- \sin x)}{x}=( \quad \quad )$.
$\text{A.}$ $\pi$
$\text{B.}$ $2\pi$
$\text{C.}$ $3\pi$
$\text{D.}$ $4\pi$
设$f(x)$在$x=a$处连续,$\phi(x)=|x-a|f(x)$,若$\phi(x)$在$x=a$处可导,则$\left(\quad\right)$.
$\text{A.}$ $f(a) =0$
$\text{B.}$ $f(a)≠ 0$
$\text{C.}$ $f'( a) = 0$
$\text{D.}$ $f'( a)≠ 0$
若 $\lim \limits_ {x \rightarrow 0} \dfrac {x- \sin ax}{ \int _{0}^{x} \dfrac {t^{2}}{ \sqrt {b t^{4}}}dt}=2$, 则$\left(\quad\right)$.
$\text{A.}$ $a = 1$,$b = 2$
$\text{B.}$ $a = 1$,$b = 4$
$\text{C.}$ $a = 1$,$b = 6$
$\text{D.}$ $a = 1$,$b = 16$