考研数学
重点科目
其它科目

科数网

试卷56

数学

单选题 (共 6 题 ),每题只有一个选项正确
已知 $\beta_{1} 、 \beta_{2}$ 是非齐次线性方程组 $A x=b$ 的两个不同的解, $\alpha_{1} 、 \alpha_{2}$ 是对应齐次线性方程组 $A x=0$ 的基础解系, $k_{1}, k_{2}$ 为任意常数, 则方程组 $A x=b$ 的通解 (一般解) 必是
$\text{A.}$ $k_{1} \alpha_{1}+k_{2}\left(\alpha_{1}+\alpha_{2}\right)+\frac{\beta_{1}-\beta_{2}}{2}$ $\text{B.}$ $k_{1} \alpha_{1}+k_{2}\left(\alpha_{1}-\alpha_{2}\right)+\frac{\beta_{1}+\beta_{2}}{2}$ $\text{C.}$ $k_{1} \alpha_{1}+k_{2}\left(\beta_{1}+\beta_{2}\right)+\frac{\beta_{1}-\beta_{2}}{2}$ $\text{D.}$ $k_{1} \alpha_{1}+k_{2}\left(\beta_{1}-\beta_{2}\right)+\frac{\beta_{1}+\beta_{2}}{2}$

当 $x \rightarrow 0$ 时, $x-\ln \left(x+\sqrt{1+x^2}\right) \sim c x^k$, 则 $c, k$ 分别是
$\text{A.}$ $\frac{1}{6}, 3$. $\text{B.}$ $\frac{1}{6}, 2$. $\text{C.}$ $\frac{1}{3}, 2$. $\text{D.}$ $\frac{1}{3}, 3$.

曲线 $f(x)=\int_x^{\sqrt{3}} x \sin t^2 \mathrm{~d} t$ 与直线 $x=0, x=\sqrt{3}, y=0$ 所围平面图形绕 $y$ 轴旋转一周所形成的 旋转体的体积为
$\text{A.}$ $\frac{1}{3} \pi \sin 3-\pi \cos 3$. $\text{B.}$ $-\frac{1}{3} \pi \sin 3-\pi \cos 3$. $\text{C.}$ $\frac{2}{3} \pi \sin 3-2 \pi \cos 3$. $\text{D.}$ $-\pi \cos 3-\pi \sin 3$.

$\lim _{n \rightarrow \infty} \frac{\pi}{2 n^4} \sum_{i=1}^n \sum_{j=1}^n i^2 \sin \frac{\pi j}{2 n}=$
$\text{A.}$ $\frac{1}{2}$. $\text{B.}$ $\frac{1}{3}$. $\text{C.}$ $\frac{1}{4}$. $\text{D.}$ $\frac{1}{5}$.

下列级数中收敛的是
$\text{A.}$ $\sum_{n=1}^{\infty}\left[n \ln \left(1+\frac{1}{n}\right)\right]^n$. $\text{B.}$ $\sum_{n=1}^{\infty}(\sqrt[3]{n+1}-\sqrt[3]{n})$. $\text{C.}$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}+(-1)^n}$. $\text{D.}$ $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$.

若方程 $a\left(x^2+y^2+z^2\right)+4(x y+y z+z x)=1$ 的图形是双叶双曲面, 则常数 $a$ 的取值范围为
$\text{A.}$ $a < -4$. $\text{B.}$ $-4 < a < 2$. $\text{C.}$ $-2 < a < 4$. $\text{D.}$ $a < 2$.

试卷二维码

分享此二维码到群,让更多朋友参与