考研数学
重点科目
其它科目

科数网

重庆工商大学(商务系)- 概率与统计 - 半期测试

数学

单选题 (共 6 题 ),每题只有一个选项正确
7. 设 $A, B, C$ 为三个随机事件, 且 $P(A)=P(B)=P(C)=\frac{1}{4}, P(A B)=0$ $P(A C)=P(B C)=\frac{1}{12}$, 则 $A, B, C$ 中恰有一个事件发生的概率为
$\text{A.}$ $\frac{3}{4}$ $\text{B.}$ $\frac{2}{3}$ $\text{C.}$ $\frac{1}{2}$ $\text{D.}$ $\frac{5}{12}$

某工厂急需 12 只集成电路装配仪表, 现要到外地采购, 已知该型号集成电路的不合格 品率为 $0.1$, 问需要采购几只才能以 $99 \%$ 的把握保证其中合格的集成电路不少于有 12 只?
$\text{A.}$ 15 $\text{B.}$ 16 $\text{C.}$ 17 $\text{D.}$ 18

设随机变量 $X \sim t(n), Y \sim F(1, n)$, 如果 $c>0$ 使得 $\mathbb{P}(0 < X < c)=\alpha$, 则 $\mathbb{P}\left(Y>c^2\right)=$ ()
$\text{A.}$ $1-\alpha$ $\text{B.}$ $\alpha$ $\text{C.}$ $1-2 \alpha$ $\text{D.}$ $2 \alpha$

设平面区域 $D=\left\{(x, y) \mid 0 \leqslant x \leqslant 2,0 \leqslant y \leqslant 4-x^2\right\}$, 向 $D$ 内随机投掷一点 $(X$, $Y)$, 记 $A=\{X \leqslant 1\}, B=\{Y \leqslant 3\}$, 则随机事件 $A, B$ 恰好有一个发生的概率为()
$\text{A.}$ $\frac{1}{16}$. $\text{B.}$ $\frac{7}{16}$. $\text{C.}$ $\frac{5}{16}$. $\text{D.}$ $\frac{3}{16}$.

设随机变量 $X$ 与 $Y$ 相互独立, $X \sim N(0,1), Y$ 的概率分布为 $P\{Y=0\}=\frac{1}{4}$, $P\{Y=1\}=\frac{3}{4}, Z=X Y$, 则对于 $Z$ 的分布函数 $F(z)$ 有
$\text{A.}$ $\lim _{z \rightarrow 0^{-}} F(z)=\frac{3}{8}, \lim _{z \rightarrow 0^{+}} F(z)=\frac{5}{8}$. $\text{B.}$ $\lim _{z \rightarrow 0^{-}} F(z)=\lim _{z \rightarrow 0^{+}} F(z)=\frac{1}{2}$. $\text{C.}$ $\lim _{z \rightarrow 0^{-}} F(z)=\frac{1}{4}, \lim _{z \rightarrow 0^{+}} F(z)=\frac{3}{4}$. $\text{D.}$ $\lim _{z \rightarrow 0^{-}} F(z)=\frac{3}{4}, \lim _{z \rightarrow 0^{+}} F(z)=\frac{5}{8}$.

设 $X_1, X_2, \cdots, X_8$ 为来自总体 $X \sim N\left(0, \sigma^2\right)$ 的简单随机样本, $Y^2=\frac{1}{8} \sum_{i=1}^8 X_i^2$, 则 下列选项正确的是
$\text{A.}$ $X^2 \sim \chi^2(1)$. $\text{B.}$ $Y^2 \sim \chi^2(8)$ $\text{C.}$ $\frac{X}{Y} \sim t(8)$. $\text{D.}$ $\frac{X^2}{Y^2} \sim F(8,1)$.

试卷二维码

分享此二维码到群,让更多朋友参与