考研数学
重点科目
其它科目

科数网

函数与极限单选题1

数学

单选题 (共 6 题 ),每题只有一个选项正确
设函数 $f(x)$ 在 $x=a$ 处可导, 则 $\lim _{x \rightarrow a} \frac{f(x) a^3-f(a) x^3}{a^2-x^2}=$
$\text{A.}$ $3 a^2 f^{\prime}(a)+2 f(a)$ $\text{B.}$ $-\frac{a^2}{3} f^{\prime}(a)+\frac{1}{2} f(a)$ $\text{C.}$ $3 a^2 f^{\prime}(a)-\frac{2}{3} f(a)$ $\text{D.}$ $-\frac{a^2}{2} f^{\prime}(a)+\frac{3 a}{2} f(a)$

设 $\alpha_1=\sqrt{x+\sqrt{x}}, \alpha_2=\sqrt[3]{x} \tan (x+\sqrt{x}), \alpha_3=1-\cos \sqrt{x}$. 当 $x \rightarrow 0^{+}$时, 以上 3 个无穷小量按照从低阶到高阶的排序是
$\text{A.}$ $\alpha_1, \alpha_2, \alpha_3$. $\text{B.}$ $\alpha_1, \alpha_3, \alpha_2$. $\text{C.}$ $\alpha_2, \alpha_1, \alpha_3$. $\text{D.}$ $\alpha_3, \alpha_1, \alpha_2$.

设 $f(x)=x \sin \frac{1}{x}$, 则 $\lim _{x \rightarrow \infty} f(x)=$
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ $\infty$ $\text{D.}$ 不存在

设 $y=f(x)$ 可导, 则当 $\Delta x \rightarrow 0$ 时, $\Delta y-d y$ 是 $\Delta x$ 的
$\text{A.}$ 高阶无穷小 $\text{B.}$ 等价无穷小 $\text{C.}$ 同阶无穷小 $\text{D.}$ 低阶无穷小

$x \rightarrow 0^{+}$时, 下列无穷小量的阶数从低到高的排序是 ( )
(1). 由 $\left\{\begin{array}{l}x=t^3 \\ y=t^2\end{array}\right.$ 确定的函数 $y=f(x)$
(2). $\ln \left(-x+\sqrt{1+x^2}\right)$
(3). $\int_0^{\sin x} \ln \left(1+\sqrt{t^2}\right) \mathrm{d} t$
(4). $\frac{1-\cos \sqrt{x}}{\sqrt[4]{x}}$
$\text{A.}$ (1)(4)(2)(3) $\text{B.}$ (2)(4)(1)(3) $\text{C.}$ (1)(4)(3)(2) $\text{D.}$ (4)(2)(1)(3)

当 $x \rightarrow 0$ 时, 无穷小 $\alpha=\sqrt{1+x \cos x}-\sqrt{1+\sin x}, \beta=\int_0^{\mathrm{e}^{2 x}-1} \frac{\sin ^2 t}{t} \mathrm{~d} t, \gamma=\cos (\tan x)-\cos x$的阶数由低到高的次序为
$\text{A.}$ $\alpha, \beta, \gamma$ $\text{B.}$ $\beta, \gamma, \alpha$ $\text{C.}$ $\gamma, \alpha, \beta$ $\text{D.}$ $\beta, \alpha, \gamma$

试卷二维码

分享此二维码到群,让更多朋友参与