考研数学
重点科目
其它科目

科数网

填空1试卷具体名称

数学

填空题 (共 6 题 ),请把答案直接填写在答题纸上
设区域 $D$ 为 $x^{2}+y^{2} \leqslant R^{2}$, 则 $\iint_{D}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right) \mathrm{d} x \mathrm{~d} y=$

设 $y=y(x)$ 由 $\left\{\begin{array}{l}x=3 t^2+2 t+3, \\ y=\mathrm{e}^y \sin t+1\end{array}\right.$ 所确定, 则曲线 $y=y(x)$ 在 $t=0$ 对应的点 处的曲率 $k=$

设 $f(x)=\int_{-x}^x \frac{\sin x t}{t} \mathrm{~d} t, x \neq 0$, 则 $\int x^2 f^{\prime}(x) \mathrm{d} x=$

设 $\Sigma$ 为 $x^2+y^2+z^2=1(z \geqslant 0), l, m, n$ 为 $\Sigma$ 上任一点处的外法线的方向余弦, 则 $I=\iint_{\Sigma} z(l x+m y+n z) \mathrm{d} S=$

$f(x, y)=\mathrm{e}^{2 x}\left(x+2 y+y^2\right)$ 的极值为

设区域 $D=\left\{(x, y) \mid 1 \leqslant x^2+y^2 \leqslant 4, x \geqslant 0, y \geqslant 0\right\}$, 则二重积分 $I=\iint \frac{x \sqrt{x^2+y^2}}{x+y} \mathrm{~d} x \mathrm{~d} y=$

试卷二维码

分享此二维码到群,让更多朋友参与