考研数学
重点科目
其它科目

科数网

填空3试卷具体名称

数学

填空题 (共 6 题 ),请把答案直接填写在答题纸上
设 $f(x)$ 是周期为 2 的周期函数, 它在区间 $(-1,1]$ 上的定义为
$$
f(x)= \begin{cases}2, & -1 < x \leqslant 0, \\ x^{3}, & 0 < x \leqslant 1,\end{cases}
$$
则 $f(x)$ 的傅里叶 (Fourier) 级数在 $x=1$ 处收敛于

设 $f(x)=\left\{\begin{array}{ll}-1, & -\pi < x \leqslant 0, \\ 1+x^{2}, & 0 < x \leqslant \pi,\end{array}\right.$ 则其以 $2 \pi$ 为周期的傅里叶级数在点 $x=\pi$ 处收敛于

设函数 $f(x)=\pi x+x^{2}(-\pi < x < \pi)$ 的傅里叶级数展开式为 $\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$, 则其中系数 $b_{3}$ 的值为

幂级数 $\sum_{n=1}^{\infty} \frac{n}{2^{n}+(-3)^{n}} x^{2 n-1}$ 的收敛半径 $R=$

设函数 $f(x)=x-[x]$, 其中 $[x]$ 表示不超过 $x$ 的最大整数, 令
$$
a_n=\int_{-1}^1 f(x) \cos n \pi x \mathrm{~d} x, b_n=\int_{-1}^1 f(x) \sin n \pi x \mathrm{~d} x, n=0,1,2, \cdots .
$$
令 $S(x)=\sum_{n=1}^{\infty}\left(a_n \cos n \pi x+b_n \sin n \pi x\right),-\infty < x < +\infty$, 则 $S(-5)=$

$\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+\cdots+\frac{2 n-1}{2^n}\right)=$

试卷二维码

分享此二维码到群,让更多朋友参与