高等数学23

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
$ \lim _{x \rightarrow 0} \dfrac{1-\cos x}{\left(\mathrm{e}^{2 x}-1\right) \ln (1-x)}$

$ \lim _{x \rightarrow 0^{+}} \dfrac{\int_0^{\sqrt{x}}\left(1-\cos t^2\right) d t}{x^{\frac{5}{2}}}$

$ \int \frac{x}{1+\cos 2 x} d x$

$\int_0^{\frac{\pi}{2}} \sqrt{1-\sin 2 x} d x$

$\int_0^{+\infty} \frac{1}{x^2+4 x+13} \mathrm{~d} x$

设 $f(x)$ 是可导函数, 且 $f(x) \cos x+2 \int_0^x f(t) \sin t \mathrm{~d} t=x+1$, 求 $f(x)$.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。