单选题 (共 6 题 ),每题只有一个选项正确
设 $f(x)$ 有二阶连续导数, 且 $f^{\prime}(0)=0, \lim _{x \rightarrow 0} \frac{f^{\prime \prime}(x)}{|x|}=1$, 则( )
$\text{A.}$ $f(0)$ 是 $f(x)$ 的极大值.
$\text{B.}$ $f(0)$ 是 $f(x)$ 的极小值.
$\text{C.}$ $(0, f(0))$ 是曲线 $y=f(x)$ 的拐点.
$\text{D.}$ $f(0)$ 不是 $f(x)$ 的极值, $(0, f(0))$ 也不是曲线 $y=f(x)$ 的拐点.
设 $f^{\prime}\left(x_0\right)=f^{\prime \prime}\left(x_0\right)=0, f^{\prime \prime \prime}\left(x_0\right)>0$ 则下列选项正确的是
$\text{A.}$ $f^{\prime}\left(x_0\right)$ 是 $f^{\prime}(x)$ 的极大值
$\text{B.}$ $f\left(x_0\right)$ 是 $f(x)$ 的极大值
$\text{C.}$ $f\left(x_0\right)$ 是 $f(x)$ 的极小值
$\text{D.}$ $\left(x_0, f\left(x_0\right)\right)$ 是曲线 $y=f(x)$ 的拐点
已知函数 $y=f(x)$ 对一切 $x$ 满足$x f^{\prime \prime}(x)+3 x\left[f^{\prime}(x)\right]^2=1-e^{-x} \text {. }$
若 $f^{\prime}\left(x_0\right)=0\left(x_0 \neq 0\right)$ ,则
$\text{A.}$ $f\left(x_0\right)$ 是 $f(x)$ 的极大值
$\text{B.}$ $f\left(x_0\right)$ 是 $f(x)$ 的极小值
$\text{C.}$ $\left(x_0, f\left(x_0\right)\right)$ 是曲线 $y=f(x)$ 的拐点
$\text{D.}$ $f\left(x_0\right)$ 不是 $f(x)$ 的极值, $\left(x_0, f\left(x_0\right)\right)$ 也不是曲线 $y=f(x)$ 的拐点
设函数 $f(x)$ 的导数在 $x=a$ 处连续,又 $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{x-a}=-1$ ,则
$\text{A.}$ $x=a$ 是 $f(x)$ 的极小值点.
$\text{B.}$ $x=a$ 是 $f(x)$ 的极大值点.
$\text{C.}$ (a, f(a))$ 是曲线 $y=f(x)$ 的拐点
$\text{D.}$ $x=a$ 不是 $f(x)$ 的极值点, $(a, f(a))$ 也不是曲线 $y=f(x)$ 的拐点
设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内连续,其导函数的图形如下图所示,则 $f(x)$ 有
$\text{A.}$ 一个极小值点和两个极大值点
$\text{B.}$ 两个极小值点和一个极大值点
$\text{C.}$ 两个极小值点和两个极大值点
$\text{D.}$ 三个极小值点和一个极大值点