单选题 (共 6 题 ),每题只有一个选项正确
设 $n$ 阶方阵 $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ 满足关系式 $\boldsymbol{A B C}=\boldsymbol{E}$, 其中 $\boldsymbol{E}$ 是 $n$ 阶单位阵, 则必有 ( )
$\text{A.}$ $\boldsymbol{A C B}=\boldsymbol{E}$.
$\text{B.}$ $\boldsymbol{C B A}=\boldsymbol{E}$.
$\text{C.}$ $\boldsymbol{B A C}=\boldsymbol{E}$.
$\text{D.}$ $\boldsymbol{B C} \boldsymbol{A}=\boldsymbol{E}$.
已知 $Q=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9\end{array}\right), P$ 为三阶非零矩阵, 且满足 $P Q=0$, 则
$\text{A.}$ $t=6$ 时, $P$ 的秩必为 1
$\text{B.}$ $t=6$ 时, $P$ 的秩必为 2
$\text{C.}$ $t \neq 6$ 时, $P$ 的秩必为 1
$\text{D.}$ $t \neq 6$ 时, $P$ 的秩必为 2
设
$$
\boldsymbol{A}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right), \quad \boldsymbol{B}=\left(\begin{array}{ccc}
a_{21} & a_{22} & a_{23} \\
a_{11} & a_{12} & a_{13} \\
a_{31}+a_{11} & a_{32}+a_{12} & a_{33}+a_{13}
\end{array}\right),
$$
$$
\boldsymbol{P}_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \boldsymbol{P}_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right),
$$
则必有
$\text{A.}$ $\boldsymbol{A} \boldsymbol{P}_{2} \boldsymbol{P}_{1}=\boldsymbol{B}$.
$\text{B.}$ $\boldsymbol{A P} \boldsymbol{P}_{1}=\boldsymbol{B}$.
$\text{C.}$ $\boldsymbol{P}_{2} \boldsymbol{P}_{1} \boldsymbol{A}=\boldsymbol{B}$.
$\text{D.}$ $\boldsymbol{P}_{1} \boldsymbol{P}_{2} \boldsymbol{A}=\boldsymbol{B}$.
设 $A, B$ 都是 $n$ 阶非零矩阵,且 $A B=0$ ,则 $A$ 和 $B$ 的秩
$\text{A.}$ 必有一个等于零
$\text{B.}$ 都小于 $n$
$\text{C.}$ 一个小于 $\boldsymbol{n}$ ,一个等于 $\boldsymbol{n}$
$\text{D.}$ 都等于 $n$
设 $n(n \geq 3)$ 阶矩阵 $A=\left(\begin{array}{ccccc}1 & a & a & \cdots & a \\ a & 1 & a & \cdots & a \\ a & a & 1 & \cdots & a \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a & a & a & \cdots & 1\end{array}\right)$, 若矩阵 $A$ 的秩为 $n-1$ ,则 $a$ 必为
$\text{A.}$ 1
$\text{B.}$ $\frac{1}{1-n}$
$\text{C.}$ -1
$\text{D.}$ $\frac{1}{n-1}$
设 $A$ 是 $m \times n$ 矩阵, $B$ 是 $n \times m$ 矩阵,则
$\text{A.}$ 当 $m>n$ 时,必有行列式 $|A B| \neq 0$
$\text{B.}$ 当 $m>n$ 时,必有行列式 $|A B|=0$
$\text{C.}$ 当 $n>m$ 时,必有行列式 $|A B| \neq 0$
$\text{D.}$ 当 $n>m$ 时,必有行列式 $|A B|=0$