考4

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 4 题 ),每题只有一个选项正确
当 $x \rightarrow 0$ 时, 无穷小 $\alpha=\sqrt{1+x \cos x}-\sqrt{1+\sin x}, \beta=\int_0^{\mathrm{e}^{2 x}-1} \frac{\sin ^2 t}{t} \mathrm{~d} t, \gamma=\cos (\tan x)-\cos x$的阶数由低到高的次序为
$\text{A.}$ $\alpha, \beta, \gamma$ $\text{B.}$ $\beta, \gamma, \alpha$ $\text{C.}$ $\gamma, \alpha, \beta$ $\text{D.}$ $\beta, \alpha, \gamma$

$\lim _{x \rightarrow 0} \frac{1}{x^{80}} \mathrm{e}^{-\frac{1}{x^2}}$
$\text{A.}$ $\text{B.}$

已知函数 $f(x), g(x)$ 可导, 且 $f^{\prime}(x)>0, g^{\prime}(x) < 0$, 则
$\text{A.}$ $\int_{-1}^0 f(x) g(x) \mathrm{d} x>\int_0^1 f(x) g(x) \mathrm{d} x$. $\text{B.}$ $\int_{-1}^0|f(x) g(x)| \mathrm{d} x>\int_0^1|f(x) g(x)| \mathrm{d} x$. $\text{C.}$ $\int_{-1}^0 f[g(x)] \mathrm{d} x>\int_0^1 f[g(x)] \mathrm{d} x$. $\text{D.}$ $\int_{-1}^0 f[f(x)] \mathrm{d} x>\int_0^1 g[g(x)] \mathrm{d} x$.

$\lim _{x \rightarrow \infty} \frac{3 x-5}{x^3 \sin \frac{1}{x^2}}=$
$\text{A.}$ 0 $\text{B.}$ 3 $\text{C.}$ $-\frac{3}{8}$. $\text{D.}$ 1

解答题 (共 2 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
求极限 $\lim _{x \rightarrow 0} \dfrac{\left(1+\sin ^2 x\right)^{1902}-(\cos x)^{2022}}{\tan ^2 x} $

计算: $\lim _{x \rightarrow 0} \frac{\int_x^0 \ln (1+t) d t}{x^2}$ 。

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷