卷1

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
设函数 $f(x)$ 连续, 且 $f^{\prime}(0)>0$, 则存在 $\delta>0$, 使得
$\text{A.}$ $f(x)$ 在 $(0, \delta)$ 内单调增加. $\text{B.}$ $f(x)$ 在 $(-\delta, 0)$ 内单调减少. $\text{C.}$ 对任意的 $x \in(0, \delta)$, 有 $f(x)>f(0)$. $\text{D.}$ 对任意的 $x \in(-\delta, 0)$, 有 $f(x)>f(0)$.

设函数 $f_i(x)(i=1,2)$ 具有二阶连续导数, 且 $f_i^{\prime \prime}\left(x_0\right) < 0(i=1,2)$. 若两条曲线 $y=f_i(x)(i=1,2)$ 在点 $\left(x_0, y_0\right)$ 处具有公切线 $y=g(x)$, 且该点 处曲线 $y=f_1(x)$ 的曲率大于曲线 $y=f_2(x)$ 的曲率, 则在 $x_0$ 的某个邻域内 , 有
$\text{A.}$ $f_1(x) \leq f_2(x) \leq g(x)$. $\text{B.}$ $f_2(x) \leq f_1(x) \leq g(x)$. $\text{C.}$ $f_1(x) \leq g(x) \leq f_2(x)$. $\text{D.}$ $f_2(x) \leq g(x) \leq f_1(x)$.

$\lim _{x \rightarrow 0} \frac{a \tan x+b(1-\cos x)}{c \ln (1-2 x)+d\left(1-\mathrm{e}^{-x^2}\right)}=2$, 其中 $a^2+c^2 \neq 0$, 则必有
$\text{A.}$ $b=4 d$. $\text{B.}$ $b=-4 d$. $\text{C.}$ $a=4 c$. $\text{D.}$ $a=-4 c$.

下列命题中正确的是
$\text{A.}$ 若 $\lim _{x \rightarrow x_0} f(x) \geqslant \lim _{x \rightarrow x_0} g(x) \Rightarrow \exists \delta>0$, 当 $0 < \left|x-x_0\right| < \delta$ 时 $f(x) \geqslant g(x)$. $\text{B.}$ 若 $\exists \delta>0$ 使得当 $0 < \left|x-x_0\right| < \delta$ 时有 $f(x)>g(x)$ 且 $\lim _{x \rightarrow x_0} f(x)=A_0, \lim _{x \rightarrow x_0} g(x)=B_0$ 均 $\exists$, 则 $A_0>B_0$. $\text{C.}$ 若 $\exists \delta>0$, 当 $0 < \left|x-x_0\right| < \delta$ 时 $f(x)>g(x) \Rightarrow \lim _{x \rightarrow x_0} f(x) \geqslant \lim _{x \rightarrow x_0} g(x)$. $\text{D.}$ 若 $\lim _{x \rightarrow x_0} f(x)>\lim _{x \rightarrow x_0} g(x) \Rightarrow \exists \delta>0$, 当 $0 < \left|x-x_0\right| < \delta$ 时有 $f(x)>g(x)$.

$\lim _{x \rightarrow 0} \dfrac{\cos \left(x e^x\right)-\mathrm{e}^{-\frac{x^2}{2} e^{2 x}}}{x^4}=$
$\text{A.}$ 0 $\text{B.}$ $-\frac{1}{6}$. $\text{C.}$ $-\frac{1}{8}$. $\text{D.}$ $-\frac{1}{12}$.

设 $f(x)=\frac{\left|x^2-1\right|}{x^2-x-2} \arctan \frac{1}{x}$, 则
$\text{A.}$ $f(x)$ 有一个可去间断点, 一个跳跃间断点, 一个第二类间断点 $\text{B.}$ $f(x)$ 有两个可去间断点,一个第二类间断点 $\text{C.}$ $f(x)$ 有两个跳跃间断点, 一个第二类间断点 $\text{D.}$ $f(x)$ 有一个跳跃间断点, 两个第二类间断点

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷