试卷12

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 5 题 ),每题只有一个选项正确
设函数 $f(x, y)=1+\frac{x y}{\sqrt{1+y^3}}$, 则积分 $I=\int_0^1 \mathrm{~d} x \int_{x^2}^1 f(x, y) \mathrm{d} y=$
$\text{A.}$ $\frac{1}{3}(\sqrt{2}+1)$. $\text{B.}$ $\frac{1}{6}(\sqrt{2}-1)$. $\text{C.}$ $\frac{1}{6}(\sqrt{2}+1)$. $\text{D.}$ $\frac{1}{3}(\sqrt{2}-1)$.

设二重积分 $I_1=\iint_D \frac{x+y-1}{4} \mathrm{~d} x \mathrm{~d} y, I_2=\iint_D\left(\frac{x+y-1}{4}\right)^2 \mathrm{~d} x \mathrm{~d} y, I_3=\iint_D\left(\frac{x+y-1}{4}\right)^3 \mathrm{~d} x \mathrm{~d} y$, 其 中 $D=\left\{(x, y) \mid(x-2)^2+(y-1)^2 \leqslant 2\right\}$, 则 $I_1, I_2, I_3$ 的大小关系为
$\text{A.}$ $I_1 < I_2 < I_3$. $\text{B.}$ $I_3 < I_2 < I_1$. $\text{C.}$ $I_3 < I_1 < I_2$. $\text{D.}$ $I_2 < I_3 < I_1$.

设曲面 $\Sigma$ 是上半球面 $x^2+y^2+z^2=R^2(z \geq 0)$, 曲面 $\Sigma_1$ 是 $\Sigma$ 在第一卦限中的部分, 则有
$\text{A.}$ $\iint_{\Sigma} x \mathrm{~d} S=4 \iint_{\Sigma_1} x \mathrm{~d} S$ $\text{B.}$ $\iint_{\Sigma} y \mathrm{~d} S=4 \iint_{\Sigma_1} y \mathrm{~d} S$ $\text{C.}$ $\iint_{\Sigma} z \mathrm{~d} S=4 \iint_{\Sigma_1} z \mathrm{~d} S$ $\text{D.}$ $\iint_{\Sigma} x y z \mathrm{~d} S=4 \iint_{\Sigma_1} x y z \mathrm{~d} S$

设 $\Sigma$ 为球面 $x^2+y^2+z^2=R^2$ 的下半球面的下侧, 将曲面 积分 $\iint_{\Sigma} x^2 y^2 z \mathrm{~d} x \mathrm{~d} y$ 化为二重积分为
$\text{A.}$ $-\iint_{D_{x y}} x^2 y^2\left(-\sqrt{R^2-x^2-y^2}\right) \mathrm{d} x \mathrm{~d} y, \quad D_{x y}: x^2+y^2 \leq R^2$ $\text{B.}$ $-\iint_{D_{x y}} x^2 y^2 \sqrt{R^2-x^2-y^2} \mathrm{~d} x \mathrm{~d} y$, $D_{x y}: x^2+y^2 \leq R^2$ $\text{C.}$ $\iint_{D_{x y}} x^2 y^2\left(R^2-x^2-y^2\right) \mathrm{d} x \mathrm{~d} y$, $D_{x y}: x^2+y^2 \leq R^2$ $\text{D.}$ $-\iint_{D_{x y}} x^2 y^2\left(R^2-x^2-y^2\right) \mathrm{d} x \mathrm{~d} y$, $D_{x y}: x^2+y^2 \leq R^2$

设 $f(x, y)=x^2+2 y+y^2+x-y+1$, 则下面结论正确的是
$\text{A.}$ 点 $\left(-\frac{1}{2},-\frac{1}{2}\right)$ 是 $f(x, y)$ 的驻点且为极大值点 $\text{B.}$ 点 $\left(-\frac{1}{2},-\frac{1}{2}\right)$ 是极小值点 $\text{C.}$ 点 $(0,0)$ 是 $f(x, y)$ 的驻点但不是极值点 $\text{D.}$ 点 $(0,0)$ 是$f(x, y)$ 极大值点

填空题 (共 1 题 ),请把答案直接填写在答题纸上
设 $y=y(x)$ 由 $\left\{\begin{array}{l}x=3 t^2+2 t+3, \\ y=\mathrm{e}^y \sin t+1\end{array}\right.$ 所确定, 则曲线 $y=y(x)$ 在 $t=0$ 对应的点 处的曲率 $k=$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。