高等数学B(一)试卷3

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
设 $f(x)=\arcsin x$, 则 $f^{\prime \prime}(0)$ 为
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ -1

设 $f(x)=\left\{\begin{array}{l}\frac{2}{3} x^3, x \leq 1 \\ x^2, x>1\end{array}\right.$, 则 $f(x)$ 在 $x=1$ 处的
$\text{A.}$ 左、右导数都存在 $\text{B.}$ 左导数存在, 右导数不存在 $\text{C.}$ 左导数不存在, 右导数存在 $\text{D.}$ 左、右导数都不存在

设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内单调有界, $\left\{x_n\right\}$ 为数列, 下列命题正确的是
$\text{A.}$ 若 $\left\{x_n\right\}$ 收敛, 则 $\left\{f\left(x_n\right)\right\}$ 收敛 $\text{B.}$ 若 $\left\{x_n\right\}$ 单调,则 $\left\{f\left(x_n\right)\right\}$ 收敛 $\text{C.}$ 若 $\left\{f\left(x_n\right)\right\}$ 收敛, 则 $\left\{x_n\right\}$ 收敛. $\text{D.}$ 若 $\left\{f\left(x_n\right)\right\}$ 单调, 则 $\left\{x_n\right\}$ 收敛.

函数 $f(x)=\lim _{n \rightarrow \infty} \frac{x^n+2}{x^n+1}$ 的间断点及类型是
$\text{A.}$ $x=1$ 是第一类间断点, $x=-1$ 是第二类间断点 $\text{B.}$ $x=1$ 是第二类间断点, $x=-1$ 是第一类间断点 $\text{C.}$ $x=\pm 1$ 均是第一类间断点 $\text{D.}$ $x=\pm 1$ 均是第二类间断点

当 $x \rightarrow 0^{+}$时, 与 $\sqrt{x}$ 等价的无穷小量是
$\text{A.}$ $1-\mathrm{e}^{\sqrt{x}}$. $\text{B.}$ $\sqrt{1+\sqrt{x}}-1$. $\text{C.}$ $\ln \frac{1+x}{1-\sqrt{x}}$. $\text{D.}$ $1-\cos \sqrt{x}$.

设函数 $f(x)$ 在 $x=0$ 处连续, 下列命题错误的是
$\text{A.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ 存在, 则 $f(0)=0$. $\text{B.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)+f(-x)}{x}$ 存在, 则 $f(0)=0$. $\text{C.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ 存在, 则 $f^{\prime}(0)$ 存在. $\text{D.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)-f(-x)}{x}$ 存在, 则 $f^{\prime}(0)$ 存在.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。