函数与极限解答题3

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
$\lim _{n \rightarrow \infty}\left(\frac{1}{n^2+n+1}+\frac{2}{n^2+n+2}+\cdots+\frac{n}{n^2+n+n}\right)$

求极限 $\lim _{n \rightarrow \infty}\left(\frac{1}{n^2+1^2}+\frac{2}{n^2+2^2}+\cdots+\frac{n}{n^2+n^2}\right)$.

已知 $\lim _{x \rightarrow 1} \frac{a x^2+x-3}{x-1}=b$, 求常数 $a, b$ 的值.

求极限 $l=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \frac{1}{n+i}$.

设 $a>0$ ,函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开 区间 $(a, b)$ 内可导, $f(a) \neq f(b)$. 证明: 存在 $\xi, \eta \in(a, b)$ , 使得
$$
a b(a+b) f^{\prime}(\xi)=2 \xi \eta^2 f^{\prime}(\eta)
$$

(I) 证明: 方程 $x=1+2 \ln x$ 在 $(e,+\infty)$ 内有唯一实根 $\xi$;
(II) 取 $x_0 \in(e, \xi)$, 令 $x_n=1+2 \ln x_{n-1}(n=1,2, \cdots)$, 证明: $\lim _{n \rightarrow \infty} x_n=\xi$.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。