解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
计算 $\lim _{x \rightarrow 0} x \cot x$;
求极限 $\lim _{n \rightarrow \infty} 2^n \sin \frac{x}{2^n}$ ( $x$ 为不等于零的常数, $\left.n \in \mathbf{N}_{+}\right)$.
计算下列极限:
(1) $\lim _{x \rightarrow 0}(1-x)^{\frac{1}{x}}$;
(2) $\lim _{x \rightarrow 0}(1+2 x)^{\frac{1}{x}}$;
(3) $\lim _{x \rightarrow \infty}\left(\frac{1+x}{x}\right)^{2 x}$;
(4) $\lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{k x}$
利用极限准则证明:$ \lim _{x \rightarrow 0} \sqrt[n]{1+x}=1$
数列 $\left\{x_n\right\}$ 满足: $x_1=\sqrt{2}, x_{n+1}=\sqrt{2+x_n}\left(n \in \mathbf{N}_{+}\right)$. 证明 $\lim _{n \rightarrow \infty} x_n$ 存在, 并求此极限.
证明: 当 $x \rightarrow 0$ 时, 有
(1) $\arctan x \sim x$;
(2) $\sec x-1 \sim \frac{x^2}{2}$.