单选题 (共 6 题 ),每题只有一个选项正确
$f(x)=\frac{x \ln |x|}{|x-1|} \mathrm{e}^{\frac{1}{(x-1)(x-2)}}$ 的无穷间断点的个数为
$\text{A.}$ 0
$\text{B.}$ 1
$\text{C.}$ 2
$\text{D.}$ 3
函数 $f(x)=\lim _{n \rightarrow \infty} \frac{x^n+2}{x^n+1}$ 的间断点及类型是
$\text{A.}$ $x=1$ 是第一类间断点, $x=-1$ 是第二类间断点
$\text{B.}$ $x=1$ 是第二类间断点, $x=-1$ 是第一类间断点
$\text{C.}$ $x=\pm 1$ 均是第一类间断点
$\text{D.}$ $x=\pm 1$ 均是第二类间断点
设 $f(x)=\frac{\left|x^2-1\right|}{x^2-x-2} \arctan \frac{1}{x}$, 则
$\text{A.}$ $f(x)$ 有一个可去间断点, 一个跳跃间断点, 一个第二类间断点
$\text{B.}$ $f(x)$ 有两个可去间断点,一个第二类间断点
$\text{C.}$ $f(x)$ 有两个跳跃间断点, 一个第二类间断点
$\text{D.}$ $f(x)$ 有一个跳跃间断点, 两个第二类间断点
函数 $f(x)=\frac{(x+1)|x-1|}{e^{\frac{1}{x-2}} \ln |x|}$ 的可去间断点的个数为
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
函数 $f(x)=\frac{1}{x} \ln |1+x|$ 有
$\text{A.}$ 两个可去间断点
$\text{B.}$ 两个无穷间断点
$\text{C.}$ 一个可去间断点和一个跳跃间断点
$\text{D.}$ 一个可去间断点和一个无穷间断点
设 $f(x)=\lim _{n \rightarrow \infty} \frac{x^n-x^{2-n}}{x^{n+2}+x^{-n}}, F(x)=\int_0^x f(t) \mathrm{d} t$, 则下列结论正确的是
$\text{A.}$ $f(x)$ 仅有 2 个间断点, $F(x)$ 为连续的偶函数.
$\text{B.}$ $f(x)$ 仅有 2 个间断点, $F(x)$ 为连续的奇函数.
$\text{C.}$ $f(x)$ 有 3 个间断点, $F(x)$ 有 3 个不可导点.
$\text{D.}$ $f(x)$ 有 3 个间断点, $F(x)$ 有 2 个不可导点.