间断点

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
$f(x)=\frac{x \ln |x|}{|x-1|} \mathrm{e}^{\frac{1}{(x-1)(x-2)}}$ 的无穷间断点的个数为
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

函数 $f(x)=\lim _{n \rightarrow \infty} \frac{x^n+2}{x^n+1}$ 的间断点及类型是
$\text{A.}$ $x=1$ 是第一类间断点, $x=-1$ 是第二类间断点 $\text{B.}$ $x=1$ 是第二类间断点, $x=-1$ 是第一类间断点 $\text{C.}$ $x=\pm 1$ 均是第一类间断点 $\text{D.}$ $x=\pm 1$ 均是第二类间断点

设 $f(x)=\frac{\left|x^2-1\right|}{x^2-x-2} \arctan \frac{1}{x}$, 则
$\text{A.}$ $f(x)$ 有一个可去间断点, 一个跳跃间断点, 一个第二类间断点 $\text{B.}$ $f(x)$ 有两个可去间断点,一个第二类间断点 $\text{C.}$ $f(x)$ 有两个跳跃间断点, 一个第二类间断点 $\text{D.}$ $f(x)$ 有一个跳跃间断点, 两个第二类间断点

函数 $f(x)=\frac{(x+1)|x-1|}{e^{\frac{1}{x-2}} \ln |x|}$ 的可去间断点的个数为
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4

函数 $f(x)=\frac{1}{x} \ln |1+x|$ 有
$\text{A.}$ 两个可去间断点 $\text{B.}$ 两个无穷间断点 $\text{C.}$ 一个可去间断点和一个跳跃间断点 $\text{D.}$ 一个可去间断点和一个无穷间断点

设 $f(x)=\lim _{n \rightarrow \infty} \frac{x^n-x^{2-n}}{x^{n+2}+x^{-n}}, F(x)=\int_0^x f(t) \mathrm{d} t$, 则下列结论正确的是
$\text{A.}$ $f(x)$ 仅有 2 个间断点, $F(x)$ 为连续的偶函数. $\text{B.}$ $f(x)$ 仅有 2 个间断点, $F(x)$ 为连续的奇函数. $\text{C.}$ $f(x)$ 有 3 个间断点, $F(x)$ 有 3 个不可导点. $\text{D.}$ $f(x)$ 有 3 个间断点, $F(x)$ 有 2 个不可导点.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。