高等数学上册

期中

本试卷总分100分,考试时间80分钟。
注意事项:
答卷前, 考生务必将自己的姓名、学号、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学院:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
函数 $f(x)=\left\{\begin{array}{cl}\frac{\mathrm{e}^x-1}{x}, & x \neq 0 \\ 1, & x=0\end{array}\right.$ 在 $x=0$ 处
$\text{A.}$ 连续且取极大值 $\text{B.}$ 连续且取极小值 $\text{C.}$ 可导且导数等于 0 $\text{D.}$ 可导且导数不为 0

设函数 $f(x)$ 在区问 $[a, b]$ 上有定义, 对于命题
(1) 若 $y=f(x)$ 在 $[a, b]$ 上无界, 则 $f(x)$ 在 $[a, b]$ 上必存在间断点
(2) 若 $y=f(x)$ 在 $[a, b]$ 上可导, 则导函数 $f^{\prime}(x)$ 在 $[a, b]$ 上必有界
下列选项正确的是
$\text{A.}$ 仅 (1) 正确 $\text{B.}$ 仅(2)正确 $\text{C.}$ 都正确 $\text{D.}$ 都错误

若 $\lim _{n \rightarrow \infty} a_n=a$, 且 $a \neq 0$, 则当 $n$ 充分大时有
$\text{A.}$ $\left|a_n\right|>\frac{|a|}{2}$. $\text{B.}$ $\left|a_n\right| < \frac{|a|}{2}$. $\text{C.}$ $a_n>a-\frac{1}{n}$. $\text{D.}$ $a_n < a+\frac{1}{n}$.

若 $\lim _{x \rightarrow 0} \frac{\sin 6 x+x f(x)}{x^3}=0$, 则 $\lim _{x \rightarrow 0} \frac{6+f(x)}{x^2}$ 为
$\text{A.}$ 0 $\text{B.}$ 6 $\text{C.}$ 36 $\text{D.}$ $\infty$

设数列通项
$$x_n=\left\{\begin{array}{ll}
\frac{n^2+\sqrt{n}}{n}, & n \text { 为奇数, } \\
\frac{1}{n}, & n \text { 为偶数. }
\end{array}\right.
$$
则当 $n \rightarrow \infty$ 时, $ x_n$ 是
$\text{A.}$ 无穷大量. $\text{B.}$ 无穷小量. $\text{C.}$ 有界变量. $\text{D.}$ 无界变量.

设 $f(x)=\left\{\begin{array}{cc}\frac{1-\cos x}{\sqrt{x}}, & x>0, \\ x^2 g(x), & x \leqslant 0,\end{array}\right.$ 其中 $g(x)$ 是有界函数, 则 $f(x)$ 在 $x=0$ 处
$\text{A.}$ 极限不存在。 $\text{B.}$ 极限存在, 但不连续. $\text{C.}$ 连续, 但不可导. $\text{D.}$ 可导。

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。