高数信心打击卷

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
$f(x)=\frac{x \ln |x|}{|x-1|} \mathrm{e}^{\frac{1}{(x-1)(x-2)}}$ 的无穷间断点的个数为
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

设函数 $f(x)=\left\{\begin{array}{ll}\frac{2+\mathrm{e}^{\frac{1}{x}}}{1-\mathrm{e}^{\frac{3}{x}}}+\frac{\ln (1-a x)}{|x|}, & x \neq 0 \\ b, & x=0\end{array}\right.$ 在 $x=0$ 处连续, 则
$\text{A.}$ $a=1, b=-1$. $\text{B.}$ $a=-1, b=1$. $\text{C.}$ $a=1, b=1$. $\text{D.}$ $a=-1, b=-1$.

极限 $\lim _{x \rightarrow 0} \frac{e^{x^2}-1}{\cos x-1}=$
$\text{A.}$ 2 $\text{B.}$ $\infty$ $\text{C.}$ 0 $\text{D.}$ $-2$

设函数 $f(x)=\lim _{n \rightarrow \infty} \sqrt[n]{1+|x|^{3 n}}$, 则 $f(x)$ 在 $(-\infty,+\infty)$ 内
$\text{A.}$ 处处可导. $\text{B.}$ 恰有一个不可导点. $\text{C.}$ 恰有两个不可导点. $\text{D.}$ 至少有三个不可导点.

$\lim _{x \rightarrow 0} \frac{a \tan x+b(1-\cos x)}{c \ln (1-2 x)+d\left(1-\mathrm{e}^{-x^2}\right)}=2$, 其中 $a^2+c^2 \neq 0$, 则必有
$\text{A.}$ $b=4 d$. $\text{B.}$ $b=-4 d$. $\text{C.}$ $a=4 c$. $\text{D.}$ $a=-4 c$.

$\lim _{x \rightarrow 0} \dfrac{\cos \left(x e^x\right)-\mathrm{e}^{-\frac{x^2}{2} e^{2 x}}}{x^4}=$
$\text{A.}$ 0 $\text{B.}$ $-\frac{1}{6}$. $\text{C.}$ $-\frac{1}{8}$. $\text{D.}$ $-\frac{1}{12}$.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷