夏翌航证明自己

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
$y=f(x)=\frac{\mathrm{e}^x+x \arctan x}{\mathrm{e}^x+x-1}$ 的渐近线条数是
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

若 $\lim _{x \rightarrow 0} \frac{\sin 6 x+x f(x)}{x^3}=0$, 则 $\lim _{x \rightarrow 0} \frac{6+f(x)}{x^2}$ 为
$\text{A.}$ 0 $\text{B.}$ 6 $\text{C.}$ 36 $\text{D.}$ $\infty$

设 $f(x)=\int_0^{\sin x} \sin \left(t^2\right) d t, g(x)=x^3+x^4$, 则当 $x \rightarrow 0$ 时, $f(x)$ 是 $g(x)$ 的
$\text{A.}$ 等价无穷小. $\text{B.}$ 同阶但非等价无穷小. $\text{C.}$ 高阶无穷小. $\text{D.}$ 低阶无穷小.

有以下命题: 设 $\lim _{x \rightarrow a} f(x)$ 存在, $\lim _{x \rightarrow a} g(x)$ 不存在, $\lim _{x \rightarrow a} h(x)$ 不存在,
(1) $\lim _{x \rightarrow a}(f(x) g(x))$ 不存在
(2) $\lim _{x \rightarrow a}(g(x)+h(x))$ 不存在
(3) $\lim _{x \rightarrow a}(h(x) g(x))$ 不存在
(4) $\lim _{x \rightarrow a}(g(x)+f(x))$ 不存在
则以上命题正确的个数是
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

已知函数 $f(x)$ 具有任意阶导数, 且 $f^{\prime}(x)=[f(x)]^2$, 则当 $n \geq 2$ 时, $f^{(n)}(x)$ 等于 ( )
$\text{A.}$ $n![f(x)]^{n+1}$ $\text{B.}$ $[f(x)]^{n+1}$ $\text{C.}$ $[f(x)]^{2 n}$ $\text{D.}$ $n![f(x)]^{2 n}$

当 $x \rightarrow 0$ 时, $\ln (1+x)$ 与 $x$ 比较是 ( ).
$\text{A.}$ 高阶的无穷小 $\text{B.}$ 等价的无穷小 $\text{C.}$ 同阶的无穷小 $\text{D.}$ 低阶的无穷小

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。