大一上学期高等数学模拟卷

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
设函数 $f(x)=(1-\cos x)(2-\cos x) \cdots(n-\cos x)$, 则 $f^{\prime \prime}(0)=$
$\text{A.}$ $(n-1)$ !. $\text{B.}$ $n !$. $\text{C.}$ $(n+1)$ !. $\text{D.}$ 0

设 $f(x), g(x)$ 是恒大于零的可导函数,且 $f^{\prime}(x) g(x)-f(x) g^{\prime}(x) < 0$ ,则当 $a < x < b$ 时,有
$\text{A.}$ $f(x) g(b)>f(b) g(x)$ $\text{B.}$ $f(x) g(a)>f(a) g(x)$ $\text{C.}$ $f(x) g(x)>f(b) g(b)$ $\text{D.}$ $f(x) g(x)>f(a) g(a)$

当 $a$ 取下列哪个值时,函数 $f(x)=2 x^3-9 x^2+12 x-a$恰好有两个不同的零点
$\text{A.}$ 2 $\text{B.}$ 4 $\text{C.}$ 6 $\text{D.}$ 8

已知 $f(x)$ 在 $x=0$ 处可导,且 $f(0)=0$ ,则$\lim _{x \rightarrow 0} \frac{x^2 f(x)-2 f\left(x^3\right)}{x^3}=$
$\text{A.}$ $-2 f^{\prime}(0)$ $\text{B.}$ $-f^{\prime}(0)$ $\text{C.}$ $f^{\prime}(0)$ $\text{D.}$ 0

设函数 $f(x)$ 在 $(-\infty,+\infty)$ 连续,其二阶导函数 $f^{\prime \prime}(x)$ 的图形如下图所示,则曲线 $y=f(x)$ 的拐点个数为
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

若函数 $f(x)=\left\{\begin{array}{cc}\frac{1-\cos \sqrt{x}}{a x}, & x>0 \\ b, & x \leq 0\end{array}\right.$ 在 $x=0$ 处连续, 则
$\text{A.}$ $a b=\frac{1}{2}$ $\text{B.}$ $a b=-\frac{1}{2}$ $\text{C.}$ $a b=0$ $\text{D.}$ $a b=2$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。