1

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 4 题 ),每题只有一个选项正确
设函数 $f(x)=\lim _{n \rightarrow \infty} \frac{1+x}{1+n x^{2 n}}$ ,则 $f(x)(\quad)$
$\text{A.}$ 在 $x=1, x=-1$ 处都连续 $\text{B.}$ 在 $x=1$ 处连续, $x=-1$ 处不连续 $\text{C.}$ 在 $x=1, x=-1$ 处都不连续 $\text{D.}$ 在 $x=1$ 处不连续, $x=-1$ 处连续

设 $I=\int_a^{a+k \pi}|\sin x| \mathrm{d} x, k$ 为整数,则 $I$ 的值()
$\text{A.}$ 只与 $a$ 有关 $\text{B.}$ 只与 $k$ 有关 $\text{C.}$ 与 $a, k$ 均有关 $\text{D.}$ 与 $a, k$ 均无关

设 $f(x, y)$ 是连续函数,则 $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \mathrm{~d} x \int_{\sin x}^1 f(x, y) \mathrm{d} y=(\quad)$
$\text{A.}$ $\int_{\frac{1}{2}}^1 \mathrm{~d} y \int_{\frac{\pi}{6}}^{\arcsin y} f(x, y) \mathrm{d} x$ $\text{B.}$ $\int_{\frac{1}{2}}^1 \mathrm{~d} y \int_{\arcsin y}^{\frac{\pi}{2}} f(x, y) \mathrm{d} x$ $\text{C.}$ $\int_0^{\frac{1}{2}} \mathrm{~d} y \int_{\frac{\pi}{6}}^{\arcsin y} f(x, y) \mathrm{d} x$ $\text{D.}$ $\int_0^{\frac{1}{2}} \mathrm{~d} y \int_{\arcsin y}^{\frac{\pi}{2}} f(x, y) \mathrm{d} x$

已知幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数为 $\ln (2+x)$ ,则 $\sum_{n=1}^{\infty} n a_{2 n}=$ ( )
$\text{A.}$ $-\frac{1}{6}$ $\text{B.}$ $-\frac{1}{3}$ $\text{C.}$ $\frac{1}{6}$ $\text{D.}$ $\frac{1}{3}$

填空题 (共 2 题 ),请把答案直接填写在答题纸上
当 $x \rightarrow 0$ 时, $\int_0^x \frac{\left(1+t^2\right) \sin t^2}{1+\cos t^2} \mathrm{~d} t$ 与 $x^k$ 是同阶无穷小,则 $k=$

$\int_2^{+\infty} \frac{5}{x^4+3 x^2-4} \mathrm{~d} x=$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷