1

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 4 题 ),每题只有一个选项正确
下列函数中,在 $x=0$ 处不可导的是
$\text{A.}$ $f(x)=|x| \sin (|x|)$ $\text{B.}$ $f(x)=|x| \sin (\sqrt{|x|})$ $\text{C.}$ $f(x)=\cos |x|$ $\text{D.}$ $f(x)=\cos (\sqrt{|x|})$

过点 $(1,0,0)$ 与 $(0,1,0)$ 且与 $z=x^2+y^2$ 相切的平面方程为
$\text{A.}$ $z=0$ 与 $x+y-z=1$ $\text{B.}$ $z=0$ 与 $2 x+2 y-z=2$ $\text{C.}$ $y=x$ 与 $x+y-z=1$ $\text{D.}$ $y=x$ 与 $2 x+2 y-z=2$

$\sum_{n=0}^{\infty}(-1)^n \frac{2 n+3}{(2 n+1)!}=(\quad)$.
$\text{A.}$ $\sin 1+\cos 1$ $\text{B.}$ $2 \sin 1+\cos 1$ $\text{C.}$ $2 \sin 1+2 \cos 1$ $\text{D.}$ $3 \sin 1+2 \cos 1$

设 $M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1+x)^2}{1+x^2} \mathrm{~d} x$ ,
$$
N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+x}{e^x} \mathrm{~d} x, K=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1+\sqrt{\cos x}) \mathrm{d} x ,
$$

则 $M, N, K$ 的大小关系为
$\text{A.}$ $M>N>K$ $\text{B.}$ $M>K>N$ $\text{C.}$ $K>M>N$ $\text{D.}$ $K>N>M$

填空题 (共 2 题 ),请把答案直接填写在答题纸上
若 $\lim _{x \rightarrow 0}\left(\frac{1-\tan x}{1+\tan x}\right)^{\frac{1}{\sin k x}}=e$ ,则 $k=$

设函数 $f(x)$ 具有二阶连续导数,若曲线 $y=f(x)$ 过点 $(0,0)$ 且与曲线 $y=2^x$ 在点 $(1,2)$ 处相切,则
$$
\int_0^1 x f^{\prime \prime}(x) \mathrm{d} x=
$$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷