1

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 2 题 ),每题只有一个选项正确
设 $\alpha$ 为 $n$ 维单位列向量, $E$ 为 $n$ 阶单位矩阵,则
$\text{A.}$ $E-\alpha \alpha^T$ 不可逆 $\text{B.}$ $E+\alpha \alpha^T$ 不可逆 $\text{C.}$ $E+2 \alpha \alpha^T$ 不可逆 $\text{D.}$ $E-2 \alpha \alpha^T$ 不可逆

已知矩阵 $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1\end{array}\right] , B=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$ , $C=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$ ,则
$\text{A.}$ $A$ 与 $C$ 相似, $B$ 与 $C$ 相似 $\text{B.}$ $A$ 与 $C$ 相似, $B$ 与 $C$ 不相似 $\text{C.}$ ${A}$ 与 $C$ 不相似, $B$ 与 $C$ 相似 $\text{D.}$ $A$ 与 $C$ 不相似, $B$ 与 $C$ 不相似

填空题 (共 1 题 ),请把答案直接填写在答题纸上
设矩阵 $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1\end{array}\right) , \alpha_1, \alpha_2, \alpha_3$ 为线性无关的 3 维列向量组,则向量组 $A \alpha_1, A \alpha_2, A \alpha_3$ 的秩为

解答题 (共 2 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设 3 阶矩阵 $\boldsymbol{A}=\left(\alpha_1, \alpha_2, \alpha_3\right)$ 有 3 个不同的特征值,且 $\alpha_3=\alpha_1+2 \alpha_2$.
(1) 证明 $r(A)=2$ ;
(2) 如果 $\beta=\alpha_1+\alpha_2+\alpha_3$ ,求方程组 $\boldsymbol{A x}=\beta$ 的通解.

设二次型 $f\left(x_1, x_2, x_3\right)=2 x_1^2-x_2^2+a x_3^2+2 x_1 x_2$ $-8 x_1 x_3+2 x_2 x_3$ 在正交变换 $x=Q y$ 下的标准型为 $\lambda_1 y_1^2+\lambda_2 y_2^2$. 求 $a$ 的值及一个正交矩阵 $Q$.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷