高数期中模拟1

数 学



单选题 (共 5 题 ),每题只有一个选项正确
$\lim _{x \rightarrow 0}\left(2-2^x\right)^{\frac{1}{x}}=$
$\text{A.}$ 1. $\text{B.}$ 2 . $\text{C.}$ $\frac{1}{2}$. $\text{D.}$ $\ln 2$. $\text{E.}$ $\sqrt{e}$.

设函数 $f(x)=x^4+\left|x^3\right|$, 则使 $f^{(n)}(0)$ 存在的最高阶数 $n=(\quad)$.
$\text{A.}$ 1 ; $\text{B.}$ 2 ; $\text{C.}$ 3 ; $\text{D.}$ 4.

若 $f(x)=\frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}$, 则 $x=0$ 是 $f(x)$ 的
$\text{A.}$ 可去间断点 $\text{B.}$ 连续点 $\text{C.}$ 第二类间断点 $\text{D.}$ 跳跃间断点

设函数 $f(x)=\lim _{n \rightarrow \infty} \sqrt[n]{1+|x|^{3 n}}$ ,则 $f(x)$ 在 $(-\infty,+\infty)$内
$\text{A.}$ 处处可导 $\text{B.}$ 恰有一个不可导点 $\text{C.}$ 恰有两个不可导点 $\text{D.}$ 至少有三个不可导点

下列说法正确的是( ).
$\text{A.}$ 若数列 $\left\{x_n\right\}$ 有界,且 $\lim _{n \rightarrow \infty}\left(x_{n+1}-x_n\right)=0$ ,则数列 $\left\{x_n\right\}$ 收敛 $\text{B.}$ 若 $\lim _{n \rightarrow \infty} x_{2 n}=a, \lim _{n \rightarrow \infty}\left(x_{n+1}-x_n\right)=0$ ,则 $\lim _{n \rightarrow \infty} x_n=a$ $\text{C.}$ 若数列 $\left\{x_n\right\}$ 单调,数列 $\left\{x_{2 n}\right\}$ 收敛,则数列 $\left\{x_n\right\}$ 不一定收敛 $\text{D.}$ 若数列 $\left\{x_n\right\}$ 的任何子列都收敛,则数列 $\left\{x_n\right\}$ 不一定收敛

填空题 (共 1 题 ),请把答案直接填写在答题纸上
曲线 $r=1+\cos \theta$ 在 $\theta=\frac{\pi}{6}$ 处对应点在直角坐标系下的法线方程为

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷