填空题 (共 6 题 ),请把答案直接填写在答题纸上
若函数$f(x)$在点$x_0$处可导,且$f'(x_0) = 3$,则当$x$趋于$x_0$时,$f(x)$的线性近似为
函数 $y=\frac{x^3+3 x^2-x-3}{x^2+x-6}$ 的第一类间断点是
已知 $y=f\left(\frac{x}{\sqrt{x^2+1}}\right), f^{\prime}(x)=\arctan \left(1-x^2\right)$ ,则 $\left.d y\right|_{x=0}=$
若 $f(x)=\mathrm{e}^{2012 x} x(x+1)(x+2) \cdots(x+2012)$ ,则 $f^{\prime}(0)=$
极限 $\lim _{n \rightarrow \infty}\left(\frac{1}{n+2}+\frac{1}{n+4}+\cdots+\frac{1}{n+2 n}\right)=$
设 $x \rightarrow 0$ 时, ${e}^{\tan x}-{e}^x$ 与 $x^n$ 是同阶无穷小,则 $n=$