单选题 (共 6 题 ),每题只有一个选项正确
设 $\lim _{x \rightarrow 0} \frac{\ln (1+x)-\left(a x+b x^2\right)}{x^2}=2$ ,则
$\text{A.}$ $a=1, b=-\frac{5}{2}$
$\text{B.}$ $a=0, b=-2$
$\text{C.}$ $a=0, b=-\frac{5}{2}$
$\text{D.}$ $a=1, b=-2$
设 $F(x)=\int_x^{x+2 \pi} e^{\sin t} \sin t \mathrm{~d} t$ ,则 $F(x)$
$\text{A.}$ 为正常数
$\text{B.}$ 为负常数
$\text{C.}$ 恒为零
$\text{D.}$ 不为常数
曲线 $\left\{\begin{array}{l}x=t^2+7 \\ y=t^2+4 t+1\end{array}\right.$ 上对应于 $t=1$ 的点处的曲率半径是
$\text{A.}$ $\frac{\sqrt{10}}{50}$
$\text{B.}$ $\frac{\sqrt{10}}{100}$
$\text{C.}$ $10 \sqrt{10}$
$\text{D.}$ $5 \sqrt{10}$
设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内连续,其导函数的图形如下图所示,则 $f(x)$ 有
$\text{A.}$ 一个极小值点和两个极大值点
$\text{B.}$ 两个极小值点和一个极大值点
$\text{C.}$ 两个极小值点和两个极大值点
$\text{D.}$ 三个极小值点和一个极大值点
下列结论正确的是
$\text{A.}$ $\int_1^{+\infty} \frac{\mathrm{d} x}{x(x+1)}$ 与 $\int_0^1 \frac{\mathrm{d} x}{x(x+1)}$ 都收敛
$\text{B.}$ $\int_1^{+\infty} \frac{\mathrm{d} x}{x(x+1)}$ 与 $\int_0^1 \frac{\mathrm{d} x}{x(x+1)}$ 都发散
$\text{C.}$ $\int_1^{+\infty} \frac{\mathrm{d} x}{x(x+1)}$ 发散, $\int_0^1 \frac{\mathrm{d} x}{x(x+1)}$ 收敛
$\text{D.}$ $\int_1^{+\infty} \frac{\mathrm{d} x}{x(x+1)}$ 收敛, $\int_0^1 \frac{\mathrm{d} x}{x(x+1)}$ 发散
若 $f^{\prime \prime}(x)$ 不变号,且曲线 $y=f(x)$ 在点 $(1,1)$ 处的曲率圆为 $x^2+y^2=2$ ,则函数 $f(x)$ 在区间 $(1,2)$ 内
$\text{A.}$ 有极值点,无零点
$\text{B.}$ 无极值点,有零点
$\text{C.}$ 有极值点,有零点
$\text{D.}$ 无极值点,无零点