SJTU 高数期末模拟练习

数 学



单选题 (共 5 题 ),每题只有一个选项正确
曲线 $y=\frac{3 x^3}{2-x^2}+\operatorname{arccot}(x+2)$ 的渐近线条数为
$\text{A.}$ 4 . $\text{B.}$ 3 . $\text{C.}$ 2. $\text{D.}$ 1 .

设 $f(x)$ 在区间 $[0,2]$ 上连续,且 $f(x)+f(2-x) \neq 0$ ,则 $I=\int_0^2 \frac{f(x)}{f(x)+f(2-x)}\left(2 x-x^2\right) d x=$
$\text{A.}$ 0 . $\text{B.}$ $\frac{1}{3}$ . $\text{C.}$ $\frac{1}{2}$ . $\text{D.}$ $\frac{2}{3}$ .

设 $\alpha=(\cos 2 x)^{x-\ln (1+x)}-1, \beta=\ln \frac{1+x^2}{1-x^3}, \gamma=\int_0^{\arcsin ^2 x} \frac{\sin \sqrt{t}}{2+t^2} d t$ ,则当 $x \rightarrow 0$ 时,三个无穷小的阶数由低到高的顺序为()。

$\text{A.}$ $\alpha, \gamma, \beta$ $\text{B.}$ $\alpha, \beta, \gamma$ $\text{C.}$ $\beta, \gamma, \alpha$ $\text{D.}$ $\gamma, \beta, \alpha$

设二阶常系数齐次线性微分方程 $y^{\prime \prime}+b y^{\prime}+y=0$ 的每一个解 $y(x)$ 都在区间 $(0,+\infty)$ 上有界, 则实数 $b$ 的取值范围是( )
$\text{A.}$ $[0,+\infty)$ $\text{B.}$ $(-\infty, 0)$ $\text{C.}$ $(-\infty, 4)$ $\text{D.}$ $(-\infty,+\infty)$

已知函数 $f(x)=\int_0^x e ^{t^2} \sin t d t, g(x)=\int_0^x e ^{t^2} d t \cdot \sin ^2 x$, 则
$\text{A.}$ $x=0$ 是 $f(x)$ 的极值点, 也是 $g(x)$ 的极值点. $\text{B.}$ $x=0$ 是 $f(x)$ 的极值点, $(0,0)$ 是曲线 $y=g(x)$ 的拐点. $\text{C.}$ $x=0$ 是 $f(x)$ 的极值点, $(0,0)$ 是曲线 $y=f(x)$ 的拐点. $\text{D.}$ $(0,0)$ 是曲线 $y=f(x)$ 的拐点, $(0,0)$ 也是曲线 $y=g(x)$ 的拐点.

填空题 (共 1 题 ),请把答案直接填写在答题纸上
设一平面经过原点及点 $(6,-3,2)$, 且与平面 $4 x-y+2 z=8$ 垂直, 求此平面方程。

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。