3

数 学



单选题 (共 6 题 ),每题只有一个选项正确
微分方程 $2(x y+x) y^{\prime}=y$ 的通解是

$\text{A.}$ $y=C e^{2 x}$ $\text{B.}$ $y^2=C e^{2 x}$ $\text{C.}$ $y^2 e^{2 y}=C x$ $\text{D.}$ $e^{2 y}=C x y$

直线 $L: \frac{x}{3}=\frac{y}{-2}=\frac{z}{7}$ 和平面 $\pi: 3 x-2 y+7 z-8=0$ 的位置关系是
$\text{A.}$ 直线 $L$ 平行于平面 $\pi$ $\text{B.}$ 直线 $L$ 在平面 $\pi$ 上 $\text{C.}$ 直线 $L$ 垂直于平面 $\pi$ $\text{D.}$ 直线 $L$ 与平面 $\pi$ 斜交

$D$ 是闭区域 $\left\{(x, y) \mid a^2 \leq x^2+y^2 \leq b^2\right\}$ ,则 $\iint_D \sqrt{x^2+y^2} d \sigma=$
$\text{A.}$ $\frac{\pi}{2}\left(b^3-a^3\right)$ $\text{B.}$ $\frac{2 \pi}{3}\left(b^3-a^3\right)$ $\text{C.}$ $\frac{4 \pi}{3}\left(b^3-a^3\right)$ $\text{D.}$ $\frac{3 \pi}{2}\left(b^3-a^3\right)$

下列级数收敛的是
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+4)}$ $\text{B.}$ $\sum_{n=1}^{\infty} \frac{1+n}{n^2+1}$ $\text{C.}$ $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$ $\text{D.}$ $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n(n+1)}}$

方程 $x=\sin x+2$ 有实根的区间是 .
$\text{A.}$ $\left(\frac{\pi}{2}, 3\right)$ $\text{B.}$ $\left(0, \frac{\pi}{6}\right)$ $\text{C.}$ $\left(\frac{\pi}{6}, \frac{\pi}{4}\right)$ $\text{D.}$ $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

设 $f(x)=\frac{x^2-1}{x^2-3 x+2}$ ,则 $x=1$ 是 $f(x)$ 的 $A$
$\text{A.}$ 可去间断点 $\text{B.}$ 跳跃间断点 $\text{C.}$ 第二类间断点 $\text{D.}$ 连续点

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷