已知函数 $f ( x )=\frac{\ln x }{ x }, g(x)=\ln (x+1)+2 a x^2$, 若 $\forall x_1 \in\left[1, e ^2\right], \exists x_2 \in(0,1]$ 使得 $f\left(x_1\right)>g\left(x_2\right)$ 成立, 则实数 $a$的取值范围是()
A
$\left(-\infty,-\frac{\ln 2}{2}\right)$
B
$\left(-\infty,-\frac{\ln 2}{2}\right]$
C
$\left(-\infty,-\frac{1}{ e }\right)$
D
$\left(-\infty, e-\frac{\ln 2}{2}\right]$
E
F