设两个向量组 $a _1, a _2, \cdots, a _{ s }$ 和 $\beta _1, \beta _2, \cdots, \beta _s$ 均线性相关,则
A
有不全为 0 的数 $\lambda_1, \lambda_2, \cdots, \lambda_s$ 使 $\lambda_1 a _1+\lambda_2 a _2+\cdots+\lambda_s a _s=0$ 和 $\lambda_1 \beta_1+\lambda_2 \beta_2+\cdots \lambda_s \beta_s=0$
B
有不全为 0 的数 $\lambda_1, \lambda_2, \cdots, \lambda_{ s }$ 使 $\lambda_1\left( a _1+ \beta _1\right)+\lambda_2\left( a _2+ \beta _2\right)+\cdots+\lambda_{ s }\left( a _{ s }+ \beta _{ s }\right)=0$
C
有不全为 0 的数 $\lambda_1, \lambda_2, \cdots, \lambda_s$ 使 $\lambda_1\left( a _1-\beta_1\right)+\lambda_2\left( a _2-\beta_2\right)+\cdots+\lambda_s\left( a _s-\beta_s\right)=0$
D
有不全为 0 的数 $\lambda_1, \lambda_2, \cdots, \lambda_s$ 和不全为 0 的数 $\mu_1, \mu_2, \cdots, \mu_s$ 使 $\lambda_1 a_1+\lambda_2 a_2+\cdots+$ $\lambda_s a _{ s }=0$ 和 $\mu_1 \beta _1+\mu_2 \beta _2+\cdots+\mu_{ s } \beta _{ s }=0$
E
F