科数网
试题 ID 22929
【所属试卷】
2024版高等数学《微分方程》基础训练
设 $y=y(x)$ 是二阶常系数线性微分方程 $y^{\prime \prime}+p y^{\prime}+q y= e ^{3 x}$ 满足初始条件 $y(0)=y^{\prime}(0)=0$ 的特解,则当 $x \rightarrow 0$ 时,函数 $\frac{\ln \left(1+x^2\right)}{y(x)}$ 的极限
A
不存在
B
等于 1
C
等于 2
D
等于 3
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $y=y(x)$ 是二阶常系数线性微分方程 $y^{\prime \prime}+p y^{\prime}+q y= e ^{3 x}$ 满足初始条件 $y(0)=y^{\prime}(0)=0$ 的特解,则当 $x \rightarrow 0$ 时,函数 $\frac{\ln \left(1+x^2\right)}{y(x)}$ 的极限
不存在 等于 1 等于 2 等于 3
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见