科数网
试题 ID 23301
【所属试卷】
高等数学第一轮基础训练05(连续性与间断点)
设函数 $f(x)=\left\{\begin{array}{ll}e^x & x < 0 \\ a+x & x \geq 0\end{array}\right.$ ,应当如何选择数 $a$ ,使得 $f(x)$ 成为在 $(-\infty,+\infty)$ 内的连续函数?
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设函数 $f(x)=\left\{\begin{array}{ll}e^x & x < 0 \\ a+x & x \geq 0\end{array}\right.$ ,应当如何选择数 $a$ ,使得 $f(x)$ 成为在 $(-\infty,+\infty)$ 内的连续函数?
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见