• 试题 ID 24076


已知 $f(x)$ 在 $x=0$ 的某邻域内有定义,在 $x=0$ 的某去心邻域内可导,且极限 $\lim _{x \rightarrow 0} f^{\prime}(x)$ 存在,下列说法正确的为( )。
A 若极限 $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)+f(x)}{x}$ 存在,则 $f(x)$ 在 $x=0$ 处可导
B 若 $\int_0^x f(t) d t$ 在 $x=0$ 处可导,则 $f(x)$ 在 $x=0$ 处可导
C 若 $f^{\prime}(0)$ 存在,则 $f^{\prime}(0)$ 不一定等于 $\lim _{x \rightarrow 0} f^{\prime}(x)$
D 若 $f^{\prime}(0)$ 存在,则极限 $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x^{\frac{1}{3}}}=0$
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见